EISOB-AI16-8CH 网络同步数据采集卡 使用说明书

西安联硕电子科技有限公司 二〇一七年十二月

目 录

1	范围	错误!	未定义书签。
	1.1 使用范围	错误!	未定义书签。
	1.2术语和规定	错误!	未定义书签。
2	系统概述	错误!	未定义书签。
3	系统结构简介	错误!	未定义书签。
	3.1 装置	错误!	未定义书签。
	3.2 装置		5
4	使用环境	•••••	6
5	系统使用说明	•••••••	6
	5.1 安装连接说明		6
	5.2 注意事项		7
	5.3 技术参数		7
6	附录· 系统航插信号完义表		8

1 概要

1.1 产品简介

本产品是由西安联硕电子科技有限公司研制的,采用 ADI 公司的高精度 16 位 8 通道同步模拟采集 ADC 芯片。8 通道同步采集。板载程控选择多种模拟信号输入规格。板载模拟前端调理电路,具备差分信号两级程控放大,最大放大倍数为 128,非常适合高精度小信号测量。支持程控配置高阻输入模式直接连接测量 RTD、热电偶、测温电桥、称重电桥。

本模拟输入卡以 ARM Cortex-M4 MCU 为核心处理器,采用 100Base-T 以 太网做为数据传输接口。软件接口以 TCP/UDP 实现,通讯协议简单可靠。提供 通讯封装和上位机 C 语言例程。

本卡采用 DIN 41612 96 芯标准板对板连接器,可以和底板/背板对接。模拟输入采用魏德米勒 3.5mm 的快速插接可插拔端子连接器,方便可靠。

本卡出厂采用精密仪器标定零点和满量程误差,并在板载 Flash 存储器中保存各级放大增益下的标定参数。

1.2 技术亮点

本产品功能和性能亮点:

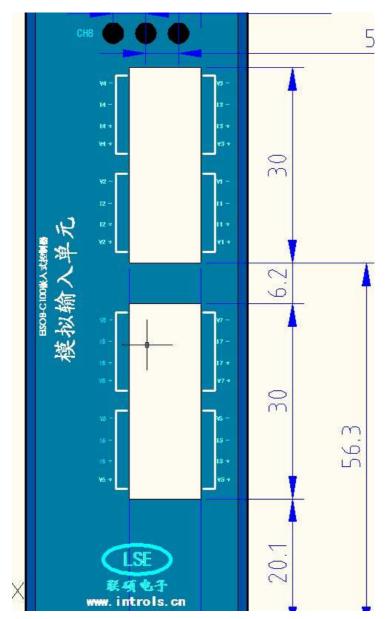
- ▶ 8 通道 16 位同步采集 ADC,每通道采样率为: 20KSPS(最大支持 200KSPS);硬件同步采样;
- 8 通道模拟前端支持 1/8、1/4、1/2、1、2、4、8、16、32、64、128 倍的程控放大增益;输入阻抗大于等于 10⁹Ω;
- ▶ 全差分模拟输入,范围可程控配置为 0~5V,0~10V,±1V、±5V、 ±10V、标准电流信号 4~20mA;支持温度信号 RTD 三线制测温 Pt100、 Pt1000;温度信号 K型热电偶;称重传感器输入;
- ▶ 100Mbps 网络接口数据输出,支持 UDP 协议;提供开发库和上位机 Demo 程序。
- ▶ 工业级操作温度范围;

1.3 保修

本产品自售出之日起一年内,用户遵守储存、运输和使用要求,而产品 质量不合要求,凭保修单免费维修。因违反操作规定和要求而造成损坏的,需缴 纳器件费及相应的运输费用,如果板卡有明显烧毁、烧糊情况原则上不予维修。 如果板卡开箱测试有问题,可以免费维修(限购买板卡 10 天内)。

1.4 软件支持服务

提供 windows Linux 平台驱动函数库和 Demo 程序。自销售之日起提供 6 个月的免费开发咨询。


- ➤ 操作系统支持: windows XP 及以上版本、Ubuntu Linux 12.0 及以上版本:
- ➤ 开发包: windows DLL 函数库, Linux 函数库;
- ➤ demo: VC, C++Builder, Linux Qt Creator;

1.5 应用领域

便携式仪表和测试设备、传感器信号采集与分析、工业控制、电力电子。

2 接口定义

2.1 EISOB-AI16-8CH 面板模拟输入端子信号定义,见下表一及图一:

图一:模拟输入端子示意图

表一: 面板模拟输入端子信号定义

PIN	定义	说明
1	CH1-V+	模拟通道 1 电压输入 V+
3	CH1-I+	模拟通道 1 电流输入 I+
5	CH1-I+	模拟通道 1 电流输入 I-
7	CH1-V-	模拟通道 1 电压输入 V-

2	CH2-V+	模拟通道 2 电压输入 V+
4	CH2-I+	模拟通道 2 电流输入 I+
6	CH2-I+	模拟通道 2 电流输入 I-
8	CH2-V-	模拟通道 2 电压输入 V-
9	CH3-V+	模拟通道 3 电压输入 V+
11	CH3-I+	模拟通道 3 电流输入 I+
13	CH3-I+	模拟通道 3 电流输入 I-
15	CH3-V-	模拟通道 3 电压输入 V-
10	CH4-V+	模拟通道 4 电压输入 V+
12	CH4-I+	模拟通道 4 电流输入 I+
14	CH4-I+	模拟通道 4 电流输入 I-
16	CH4-V-	模拟通道 4 电压输入 V-
17	CH5-V+	模拟通道 5 电压输入 V+
19	CH5-I+	模拟通道 5 电流输入 I+
21	CH5-I+	模拟通道 5 电流输入 I-
23	CH5-V-	模拟通道 5 电压输入 V-
18	CH6-V+	模拟通道 6 电压输入 V+
20	CH6-I+	模拟通道 6 电流输入 I+
22	CH6-I+	模拟通道 6 电流输入 I-
24	CH6-V-	模拟通道 6 电压输入 V-
25	CH7-V+	模拟通道 7 电压输入 V+
27	CH7-I+	模拟通道 7 电流输入 I+
29	CH7-I+	模拟通道 7 电流输入 I-
31	CH7-V-	模拟通道 7 电压输入 V-
26	CH8-V+	模拟通道8电压输入V+
28	CH8-I+	模拟通道 8 电流输入 I+
30	CH8-I+	模拟通道 8 电流输入 I-
32	CH8-V-	模拟通道8电压输入V-
		

2.2 DIN96 底板连接器信号定义,见下表二:

表二:底板 96 芯连接器信号定义

PIN	定义	10 类型	说明
A1	GND	电源输入	数字地
B1	GND	电源输入	数字地
C1	EARTH	电源输入	大地
A2	D5VA	电源输入	数字 5V
B2	D5VA	电源输入	数字 5V
C2	D5VA	电源输入	数字 5V
А3	D3V3	电源输入	数字 3.3V
ВЗ	D3V3	电源输入	数字 3.3V
C3	D3V3	电源输入	数字 3.3V
A4	ETH_TX3P	差分+	以太网 TX+
B4	GND	电源输入	数字地
C4	GND	电源输入	数字地
A5	ETH_TX3M	差分-	以太网 TX-
B5	GND	电源输入	数字地
C5	GND	电源输入	数字地
A6	ETH_RX3P	差分+	以太网 RX+
В6	GND	电源输入	数字地
C6	GND	电源输入	数字地
A7	ETH_RX3M	差分-	以太网 RX-
В7	GND	电源输入	数字地
C7	GND	电源输入	数字地
A8	GND	电源输入	数字地
B8	GND	电源输入	数字地
C8	GND	电源输入	数字地
A9	UART1_RX	TTL I	串口 1 RX (TTL)

В9	GND	电源输入	数字地
C9	GND	电源输入	数字地
A10	UART1_TX	TTL 0	串口1 TX (TTL)
B10	GND	电源输入	数字地
C10	GND	电源输入	数字地
A11	NC	NC	NC
B11	GND	电源输入	数字地
C11	GND	电源输入	数字地
A12	NC	NC	NC
B12	GND	电源输入	数字地
C12	GND	电源输入	数字地
A13	NC	NC	NC
B13	GND	电源输入	数字地
C13	GND	电源输入	数字地
A14	NC	NC	NC
B14	GND	电源输入	数字地
C14	GND	电源输入	数字地
A15	UART7_RX	TTL I	串口7 RX (TTL)
B15	GND	电源输入	数字地
C15	GND	电源输入	数字地
A16	UART7_TX	TTL 0	串口7 TX (TTL)
B16	GND	电源输入	数字地
C16	GND	电源输入	数字地
A17	UART8_RX	TTL I	串口8 RX (TTL)
B17	CAN1_RX	TTL I	CAN1 RX (TTL)
C17	GND	电源输入	数字地
A18	UART8_TX	TTL I	串口 8 TX (TTL)
B18	CAN1_TX	TTL 0	CAN1 TX (TTL)
C18	GND	电源输入	数字地

A19	无		无
B19	无		无
C19	无		无
A20	NC		NC
B20	NC		NC
C20	NC		NC
A21	NC		NC
B21	NC		NC
C21	NC		NC
A22	无		无
B22	无		无
C22	无		无
A23	+5VA	电源输入	模拟 5V (第一路)
B23	+5VA	电源输入	模拟 5V (第一路)
C23	+5VA	电源输入	模拟 5V (第一路)
A24	AGND	电源输入	模拟地
B24	AGND	电源输入	模拟地
C24	AGND	电源输入	模拟地
A25	NC		NC
B25	NC		NC
C25	NC		NC
A26	+5V	电源输入	模拟+5V(第二路)
B26	+5V	电源输入	模拟+5V(第二路)
C26	+5V	电源输入	模拟+5V(第二路)
A27	AGND	电源输入	模拟地
B27	AGND	电源输入	模拟地
C27	AGND	电源输入	模拟地
A28	-5V	电源输入	模拟-5V(第二路)
B28	-5V	电源输入	模拟-5V(第二路)

C28	-5V	电源输入	模拟-5V(第二路)
A29	NC		NC
B29	NC		NC
C29	NC		NC
A30	+15V	电源输入	模拟+15V(第三路)
В30	+15V	电源输入	模拟+15V(第三路)
C30	+15V	电源输入	模拟+15V(第三路)
A31	AGND	电源输入	模拟地
B31	AGND	电源输入	模拟地
C31	AGND	电源输入	模拟地
A32	-15V	电源输入	模拟-15V(第三路)
B32	-15V	电源输入	模拟-15V(第三路)
C32	-15V	电源输入	模拟-15V(第三路)

3 性能指标

3.1 模拟输入信号

▶ 模拟输入通道: 8 路差分(同步采集)

▶ 输入端口耐压: ±16V

▶ 输入信号量程: ±1V (当 PGA≥2) 、±10V (PGA = 1/8)

▶ 模拟输入阻抗: >1GΩ

▶ 分辨率: 16Bit;


▶ 噪声性能: 见图二;

▶ 可编程增益: 1/8、1/4、1/2、1、2、4、8、16、32、64、128

▶ 内部基准电压: 2.5V;

➤ 采样频率: 20K-200Ksps, 出厂默认 20Ksps;

典型工作特性

图二: 16 位同步 ADC 典型特性

3.2 工作温度范围

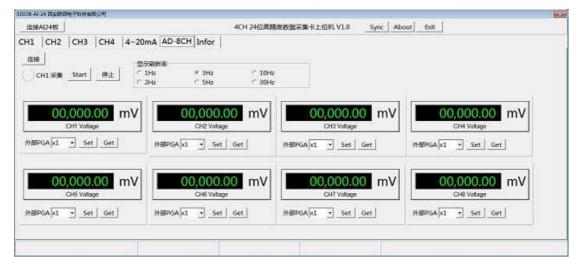
-40℃~+85℃。

3.3 板卡供电

使 EISOB-HD15D5S5 交换机/电源模块通过大底板给采集卡模块供电。交换机/电源模块提供多路电源输出,满足最多 5 个采集卡模块同时工作时的供电需求。

3.4 尺寸

板卡外形尺寸: 147mm×100.5mm


模块机壳尺寸: 152mm×55mm×108mm

3.5 安装

板卡 DIN 41612 96 芯标准板对板对接,或提供电气外壳。

4 软件安装与使用

解压缩【EISOB-C100-AI_24 测试程序.zip】软件包到目标路径。找到 setup.exe 文件,双击运行。安装完成运行如下图:

图三: 16 位 8 通道数据采集卡上位机 Demo 程序界面

操作顺序:

- 1)、点击 AD-8CH 标签页的【连接】按钮,连接成功状态栏显示板卡连接 OK:
- 2)、点击外部增益【get】获得当前外部 PGA 增益,点击增益选择框,选择 合适的 PGA 增益,点击【set】更新增益值。板卡上电默认增益为 1,不需要改变此步可忽略;
 - 3)、显示刷新框中可选择, 电压显示的刷新率;
 - 8)、点击【Start】按钮可启动采样;
 - 10)、点击【Stop】按钮可停止采样;

5 软件库、通讯协议的使用

请向厂家索取软件库函数说明。如果采用自己开发网络通讯程序,请向商家索取通讯协议。